科学家实现操纵粒子的拓扑水波结构
近日,复旦大学的资剑&石磊等人合作取得一项新进展。经过不懈努力,他们实现了操纵粒子的拓扑水波结构。相关研究成果已于2025年2月5日在国际权威学术期刊《自然》上发表。
该研究团队描述了重力水面波中拓扑结构(即波涡旋、斯格明子和极化莫比乌斯带)的可控生成。最重要的是,研究人员展示了利用拓扑结构化的水面波高效操纵亚波长和波长量级的漂浮粒子。这包括将粒子捕获在高强度场区,并利用水面波的轨道角动量和自旋角动量控制其轨道运动和自旋运动。这项研究结果揭示了水面波在光学和声学操纵方面的对应现象,为流体力学和微流控领域的应用奠定了基础。
据悉,涡旋、极化纹理和斯格明子等拓扑波结构出现在包括光学和声学在内的各种量子和经典波场中。特别是光学涡旋,已在从量子信息到天体物理学的众多领域找到了广泛应用。此外,光学和声学结构波在操纵从小至原子大到宏观生物物体的各种微粒方面至关重要。近年来,结构化水面波引起了人们的极大兴趣,它们可以成为量子、光学和声学波系统的显著类似物。然而,拓扑水面波形式,尤其是其操纵粒子的能力,尚未得到证实。
附:英文原文
Title: Topological water-wave structures manipulating particles
Author: Wang, Bo, Che, Zhiyuan, Cheng, Cheng, Tong, Caili, Shi, Lei, Shen, Yijie, Bliokh, Konstantin Y., Zi, Jian
Issue&Volume: 2025-02-05
Abstract: Topological wave structures, such as vortices, polarization textures and skyrmions, appear in various quantum and classical wave fields, including optics and acoustics. In particular, optical vortices have found numerous applications, ranging from quantum information to astrophysics. Furthermore, both optical and acoustic structured waves are crucial in the manipulation of small particles, from atoms to macroscopic biological objects. Recently, there has been a surge of interest in structured water surface waves, which can be notable analogues of quantum, optical and acoustic wave systems. However, topological water-wave forms, especially their ability to manipulate particles, have not yet been demonstrated. Here we describe the controllable generation of topological structures, namely wave vortices, skyrmions and polarization Mbius strips, in gravity water waves. Most importantly, we demonstrate the efficient manipulation of subwavelength and wavelength-order floating particles with topologically structured water waves. This includes trapping the particles in the high-intensity field zones and controlling their orbital and spinning motion due to the orbital and spin angular momenta of the water waves. Our results reveal the water-wave counterpart of optical and acoustic manipulation, which paves the way for applications in hydrodynamics and microfluidics.
DOI: 10.1038/s41586-024-08384-y
Source: https://www.nature.com/articles/s41586-024-08384-y
来源:科学网 小柯机器人